スキップしてメイン コンテンツに移動

Understanding the Improved Perceptron (The Ancestor of Deep Learning)

 The development of artificial intelligence and machine learning has its roots in the “simple models” of the 1950s and 60s.


Among these, the ADALINE (Adaptive Linear Neuron) is a groundbreaking model that underpins today’s deep learning.



1. What is ADALINE?



1.1 Basic Structure and Operating Principle


ADALINE is a simple “single-layer neural model” with a straight connection from input to output.


It first adjusts multiple input signals with appropriate weight values, sums the results, and passes them to the output layer.


Unlike conventional perceptrons, it doesn’t include a non-linear switch internally. Instead, it calculates the output value itself solely through multiplication and addition of inputs and weights.


The difference between the resulting predicted value and the correct label is evaluated using a metric called “mean squared error”, and learning progresses to minimise this error.



1.2 Learning Algorithm


ADALINE learning is performed using a method called the “Least Mean Squares rule”.


Specifically, the model constantly monitors the error between its predicted value and the actual correct answer. The larger the error, the more significantly the weights corresponding to the input and the bias for output adjustment are changed. 


Through a parameter called the learning rate, which determines the strength of the adjustment, the error is gradually reduced while searching for an appropriate combination of weights.


By repeating this update process, a model that can ultimately suppress the error as much as possible is obtained.



1.3 Historical Significance


ADALINE was proposed in the early 1960s by Bernard Widrow and Ted Hoff.


At the time, it was highly regarded as an “adaptive filter” for removing real-time noise from communication lines and was widely used in research labs and the military.


This success provided important insights that later led to learning algorithms for neural networks in general, and forms the foundation for today’s deep learning.



2. Where is ADALINE Used Today?



While there are fewer cases of ADALINE being used directly, its underlying technology continues to be active in the following fields and tasks:


- Adaptive Noise Cancelling 


Estimates and cancels stationary noise mixed with microphones and sensors.


- Channel Equalisation (Communication Engineering)


Corrects distortions occurring in wireless and fibre optic communications in real-time.


- Stock Price Prediction / Time Series Analysis


Applied as a simple linear regression model to short-term trends and error minimising filters.


- Lightweight Models for IoT/Embedded Devices


Anomaly detection and simple classification tasks under resource constraints.



3. Benefits of Learning ADALINE



- Foundation of Gradient Descent


Intuitively experience the principles of algorithms that minimise error functions.


- Boundary Between Continuous Value Prediction vs. Classification


Clearly understand why mean squared error is used and the differences between linear regression and classification.


- Visualise the Effect of Parameter Adjustment


Simply track the behaviour of learning rate, initial values, and mini-batch learning.


- Understand the Origin of Backpropagation 


- Necessity of Activation Functions and Regularisation


Optimal step to learn problems that cannot be solved with linear models alone.


- Model Selection Judgement


Ability to distinguish between tasks where a simple linear model is sufficient and those where a more complex model is needed.


- Real-time Filtering


Knowing techniques applicable to factories, medical facilities, and communication sites.


- Implementation Exercises


The experience of building a model that works with a few lines of Python/NumPy code builds confidence.



Summary



ADALINE is not an outdated technology, but a textbook for learning the foundations of machine learning.


Let’s start by getting hands-on, deepening our understanding from both theoretical and practical perspectives, and expanding the scope of application.

If you want to learn ADALINE, we recommend this book (access here).


コメント

このブログの人気の投稿

Verständnis der Trigonometrie von Grund auf: Sinus, Kosinus und Tangens

Die Trigonometrie ist ein besonders tiefgreifendes und breit anwendbares Gebiet innerhalb der Mathematik. Ihre Ursprünge liegen in der antiken griechischen Astronomie und Vermessungskunst, doch ist sie heute ein unverzichtbares Werkzeug in Bereichen von der modernen Technik und Physik bis hin zur Informationstechnologie. Dieser Artikel erklärt zunächst die grundlegenden Konzepte von "Was ist Trigonometrie?", betrachtet anschließend, wie sie in verschiedenen Situationen eingesetzt wird, und erläutert schließlich die Vorteile des Trigonometrielernens. 1. Was ist Trigonometrie? Die Trigonometrie ist eine Menge von Funktionen, die die Beziehung zwischen Winkeln und Seitenlängen in einem rechtwinkligen Dreieck ausdrücken. Die bekanntesten davon sind Sinus (sin), Kosinus (cos) und Tangens (tan). - Definition in einem rechtwinkligen Dreieck In einem rechtwinkligen Dreieck werden trigonometrische Funktionen durch die Verhältnisse der gegenüberliegenden, anliegenden und hypotenusensei...

Entscheidungsbäume – Ein Leitfaden für Anfänger

In der heutigen datengesteuerten Ära entstehen ständig neue Werkzeuge zur Unterstützung komplexer Entscheidungsfindung. Unter diesen sind „Entscheidungsbäume“ aufgrund ihrer einfachen Verständlichkeit und intuitiven Visualisierung eine beliebte Methode. Hier erklären wir die grundlegenden Konzepte von Entscheidungsbäumen, spezifische Szenarien, in denen sie eingesetzt werden, und die Vorteile, sie zu erlernen. 1. Was sind Entscheidungsbäume? Entscheidungsbäume sind ein Modelltyp, der für Datenklassifizierung und -vorhersage verwendet wird. Sie verwenden eine Baumstruktur, um den Entscheidungsprozess darzustellen. Entscheidungsbäume bestehen aus Knoten (Entscheidungsknoten) und Kanten (Verzweigungen). Jeder Knoten beinhaltet eine bedingte Beurteilung basierend auf einem bestimmten Merkmal, und die Verzweigungen divergieren basierend auf diesem Ergebnis. Letztendlich wird das Klassifikationsergebnis oder der vorhergesagte Wert an den terminalen Teilen, den sogenannten Blattknoten, angeze...

Verständnis von Kehrfunktionen von Grund auf

Die Kehrfunktion ist eine der grundlegenden Funktionen in der Mathematik, und obwohl sie einfach ist, ist sie ein leistungsstarkes Werkzeug mit Anwendungen in vielen Bereichen dank ihrer einzigartigen Eigenschaften. Dieser Artikel bietet eine detaillierte Erklärung der Definition und Eigenschaften von Kehrfunktionen, untersucht die Kontexte, in denen sie verwendet werden, und umreißt die Vorteile, sich mit ihnen auseinanderzusetzen. 1. Was ist eine Kehrfunktion? Eine Kehrfunktion gibt den Kehrwert einer gegebenen reellen Zahl zurück. - Graphische Form Der Graph einer Kehrfunktion bildet eine Hyperbel, wobei die Werte sich schnell erhöhen oder verringern, wenn sie sich dem Ursprung nähern. Sie nimmt die Form einer Hyperbel an, die sich über die ersten und dritten Quadranten erstreckt, und hat Asymptoten bei x = 0 und y = 0. Hinter dieser einfachen Gleichung verbirgt sich das Konzept des multiplikativen Inversen, das die Grundlage der elementaren Algebra bildet. 2. Wo werden Kehrfunktion...