スキップしてメイン コンテンツに移動

Understanding Descriptive Statistics from Scratch

 In modern times, when faced with vast amounts of data and wondering “what can we say about it?”, the first step is often descriptive statistics.


Descriptive statistics are basic techniques used to grasp the overall picture of data and express its characteristics through numbers and graphs – they can be considered the starting point for data analysis.


Here, we will explain what descriptive statistics are, the situations in which they are used, and the benefits of learning them.


1. What are Descriptive Statistics?


Descriptive statistics are methods for summarizing data sets numerically and visually, revealing their characteristics and patterns. Specifically, they include the following elements.


- Measures of Central Tendency


Such as the mean, median, and mode, which indicate the central position of the data and are used to understand the overall trend.


- Measures of Dispersion


Calculating indicators like variance, standard deviation, range, and interquartile range to show the spread or variability of the data, allowing you to assess its distribution.


- Shape Characteristics


Statistical measures like skewness and kurtosis, which indicate the asymmetry and peakedness of the data distribution, are also important for clarifying the data's properties.


- Visualization


Using graphs such as histograms, box plots, and scatter plots to visually represent numerical data, revealing patterns, outliers, and clusters that may not be apparent from the numbers alone.


Descriptive statistics can be considered “summary mathematics” for intuitively understanding the overall picture of data. Taking this fundamental step prepares you for more advanced analysis and prediction.


2. In What Situations are They Used?


Descriptive statistics play an important foundational role in data analysis across all fields. Here are some specific examples.


- Business & Marketing


Summarizing vast amounts of information like sales data, customer purchase history, and survey results with descriptive statistics allows you to understand market trends and customer characteristics, providing a basis for strategic planning. Visualizations through dashboards are also effective for reporting to management.


- Healthcare & Medical Field


Organizing patient data and test results using descriptive statistics allows for quantitative evaluation of health status, disease trends, and treatment effectiveness, supporting diagnosis and treatment plan development. They are also used to monitor the occurrence of infectious diseases in the field of public health.


- Public Policy & Administration


Organizing and visualizing statistical information such as population statistics, unemployment rates, and crime rates by region allows for policy evaluation and the development of new initiatives, and helps to communicate information clearly to residents.


- Education & Research


Organizing diverse survey data such as academic test results, experimental data, and surveys with descriptive statistics reveals basic trends and correlations, leading to academic research and policy recommendations.


As these examples show, descriptive statistics are a fundamental tool for understanding the “first impression” of data in each field, serving as the foundation for decision-making, strategic planning, and research.


3. What are the Benefits of Learning Them?


Learning descriptive statistics is not only a first step in data analysis but also provides significant benefits, directly applicable to a variety of fields.


- Grasping the Overall Picture of Data


Your ability to summarize and organize vast amounts of information improves, allowing you to acquire the ability to extract the essence from data. This allows you to quickly identify the core of a problem or emerging trends.


- Improving Decision-Making Accuracy


By presenting accurate information through numbers and graphs, you can make decisions based on quantitative evidence rather than speculation or intuition.


- Improving Communication Skills


By mastering techniques for visualizing and explaining complex data, you can deliver persuasive presentations based on data in the workplace, at academic conferences, and in business settings.


- From Fundamentals to Application


Descriptive statistics are a stepping stone to more advanced analytical techniques such as inferential statistics, machine learning, and big data analysis. A solid foundation will make it easier to learn these subsequent methods.


- High Versatility


It is a skill required in all fields – business, science, healthcare, and the public sector – and being proficient in descriptive statistics itself is a significant asset for career advancement.


In Conclusion


Descriptive statistics are a crucial technique as the first step in problem-solving and decision-making, extracting the essence of data.


By learning descriptive statistics, you can steadily develop the ability to unravel the “story” within data, becoming an even more valuable asset in today’s information society. We recommend starting by actually handling a dataset, calculating basic statistics, and creating graphs.


If you want to learn descriptive statistics, we recommend this book (access here).

コメント

このブログの人気の投稿

Verständnis der Trigonometrie von Grund auf: Sinus, Kosinus und Tangens

Die Trigonometrie ist ein besonders tiefgreifendes und breit anwendbares Gebiet innerhalb der Mathematik. Ihre Ursprünge liegen in der antiken griechischen Astronomie und Vermessungskunst, doch ist sie heute ein unverzichtbares Werkzeug in Bereichen von der modernen Technik und Physik bis hin zur Informationstechnologie. Dieser Artikel erklärt zunächst die grundlegenden Konzepte von "Was ist Trigonometrie?", betrachtet anschließend, wie sie in verschiedenen Situationen eingesetzt wird, und erläutert schließlich die Vorteile des Trigonometrielernens. 1. Was ist Trigonometrie? Die Trigonometrie ist eine Menge von Funktionen, die die Beziehung zwischen Winkeln und Seitenlängen in einem rechtwinkligen Dreieck ausdrücken. Die bekanntesten davon sind Sinus (sin), Kosinus (cos) und Tangens (tan). - Definition in einem rechtwinkligen Dreieck In einem rechtwinkligen Dreieck werden trigonometrische Funktionen durch die Verhältnisse der gegenüberliegenden, anliegenden und hypotenusensei...

Entscheidungsbäume – Ein Leitfaden für Anfänger

In der heutigen datengesteuerten Ära entstehen ständig neue Werkzeuge zur Unterstützung komplexer Entscheidungsfindung. Unter diesen sind „Entscheidungsbäume“ aufgrund ihrer einfachen Verständlichkeit und intuitiven Visualisierung eine beliebte Methode. Hier erklären wir die grundlegenden Konzepte von Entscheidungsbäumen, spezifische Szenarien, in denen sie eingesetzt werden, und die Vorteile, sie zu erlernen. 1. Was sind Entscheidungsbäume? Entscheidungsbäume sind ein Modelltyp, der für Datenklassifizierung und -vorhersage verwendet wird. Sie verwenden eine Baumstruktur, um den Entscheidungsprozess darzustellen. Entscheidungsbäume bestehen aus Knoten (Entscheidungsknoten) und Kanten (Verzweigungen). Jeder Knoten beinhaltet eine bedingte Beurteilung basierend auf einem bestimmten Merkmal, und die Verzweigungen divergieren basierend auf diesem Ergebnis. Letztendlich wird das Klassifikationsergebnis oder der vorhergesagte Wert an den terminalen Teilen, den sogenannten Blattknoten, angeze...

Verständnis von Kehrfunktionen von Grund auf

Die Kehrfunktion ist eine der grundlegenden Funktionen in der Mathematik, und obwohl sie einfach ist, ist sie ein leistungsstarkes Werkzeug mit Anwendungen in vielen Bereichen dank ihrer einzigartigen Eigenschaften. Dieser Artikel bietet eine detaillierte Erklärung der Definition und Eigenschaften von Kehrfunktionen, untersucht die Kontexte, in denen sie verwendet werden, und umreißt die Vorteile, sich mit ihnen auseinanderzusetzen. 1. Was ist eine Kehrfunktion? Eine Kehrfunktion gibt den Kehrwert einer gegebenen reellen Zahl zurück. - Graphische Form Der Graph einer Kehrfunktion bildet eine Hyperbel, wobei die Werte sich schnell erhöhen oder verringern, wenn sie sich dem Ursprung nähern. Sie nimmt die Form einer Hyperbel an, die sich über die ersten und dritten Quadranten erstreckt, und hat Asymptoten bei x = 0 und y = 0. Hinter dieser einfachen Gleichung verbirgt sich das Konzept des multiplikativen Inversen, das die Grundlage der elementaren Algebra bildet. 2. Wo werden Kehrfunktion...